

Seasonal Dynamics of the diversity of Phytoplankton in Gaurala Lake of Bhadrawati, District Chandrapur, Maharashtra, India

Ayasha Tabbasum M. L.*^{ID} and Praveen kumar Nasare^{ID}

Institute of Higher Learning and Research, Department of Botany, Nilkanthrao Shinde Science and Arts College, Bhadrawati, Chandrapur district, Maharashtra, India

13 August 2025: Received | 10 September 2025: Revised | 07 October 2025: Accepted | 04 November 2025: Available Online

*Corresponding Author: Ayasha Tabbasum M. L. | Email Address: ayashamq@gmail.com

Citation: Ayasha Tabbasum M. L. and Praveen kumar Nasare (2025). Seasonal Dynamics of the diversity of Phytoplankton in Gaurala Lake of Bhadrawati, District Chandrapur, Maharashtra, India. *Life Science Review*.

DOI: <https://doi.org/10.51470/LSR.2025.09.02.20>

Abstract

The present research paper surveys the seasonal dynamics of the diversity of Phytoplankton in Gaurala Lake, Bhadrawati, Chandrapur District, Maharashtra, India. Sum of 87 species of phytoplankton were discovered through four different families: Cyanophyceae (21 species), Chlorophyceae (31 species), Bacillariophyceae (27 species) and Euglenophyceae (8 species) from September 2023 to August 2024. The group Chlorophyceae showed dominance among other groups. Chlorophyceae>Cyanophyceae>Bacillariophyceae>Euglenophyceae.

Keywords: Phytoplankton, species, Gaurala lake, algae.

Introduction

Phytoplankton are tiny, photosynthetic biotic living organisms that spend their entire lives floating on the water surface (Phyto, which means plants, and plankton, which means microscopic, floating organisms). Phytoplankton are the nanoscopic, single-celled, drifting and colonizing photosynthetic organisms or algae, and grow in aquatic areas^[9]. They are the main producers. They are essential because they feed zooplanktons, fish and other aquatic organisms with live food and shelter.

Phytoplankton are photosynthetic, absorb sunlight and nutrients, and prepare their own food. Phytoplankton release molecular oxygen (O₂) into the atmosphere and water during photosynthesis. Phytoplankton is estimated to produce 70% of the oxygen on Earth and regulate the CO₂/O₂ balance. They also have a significant impact because they control the amount of dissolved oxygen, a gas that is essential to aquatic life. The density of phytoplankton determines an aquatic environment's productivity.

The diversity and density of phytoplankton are under the control of water health and status, and other biotic communities in water bodies. Phytoplankton are a crucial component of ecosystems, as they generate energy and organic material throughout the environment. Phytoplankton makes an essential contribution to the biodiversity in Lakes and reservoirs; its biotic composition is fundamental for the food cycle.

The distribution and population of phytoplankton are significantly influenced by the chemical and physical properties of water^[14].

Study Area

Bhadrawati town is located in the Chandrapur District of Maharashtra, India. Bhadrawati town lies 26 km from Chandrapur city, spanning 20 km² (8 sq mi), between latitudes 20°06'35" N and longitudes 79°07'2" E.

The Gaurala Lake is situated close to the Ganesh Temple in the Gaurala locality, on the way to Bhadrawati Railway Station Road, between the latitudes 20°08'93.51" N and longitudes 79°11'24.53" E, and at an elevation of 226.33 meters above the mean sea level. The Gaurala Lake is a persistent water body. The primary supply of water during the monsoon season comes from rainfall. Singhada agriculture, fishing, bathing, and washing are the main uses of the lake.

Methodology

Water samples for planktonic study were collected every month at 8:30 to 10:30 am from the Lake. The plankton net was used to filter 50 L of water. Lugol's iodine was added to the collected samples and allowed to settle. Sedimentation usually takes 24 hours. Supernatants were then discarded, concentrations were prepared to 50 millilitres and they were then kept in 4% formalin for further research. Samples for the quantitative analysis were centrifuged for 10 to 15 minutes at

© 2025 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

250 rpm. After shaking the concentrated samples, a single drop was taken using a standard dropper onto a slide. After carefully covering the entire drop with the cover glass, it was examined with a Zeiss PrimoStar (Electronic compound Light) microscope.

Microphotographs were taken and phytoplankton were identified up to the genus and, whenever possible, up to species level based on their reproductive and physical characters. Standard literature was used to identify phytoplankton, such as G.W. Prescott (1954), G. M. Smith (1918) and G. M. Smith (1926)^[4,5,10,11].

Result and Discussion

In this research paper, the results obtained are shown in Table 1. Sum of 87 phytoplankton were found in Gaurala Lake from September 2023 to August 2024. The recorded phytoplankton are divided into four different families as follows: order Chlorophyceae(45.95%)>Cyanophyceae(27.17%)>Bacillariophyceae(16.22%)>Euglenophyceae (10.81%). The Chlorophyceae members showed dominance over all other species. Sum of 30 species of Chlorophyceae were found in Gaurala Lake, among which *Coelastrum*, *Chlamydomonas*, *Chlorella*, *Scenedesmus*, and *Ulothrix* were found dominant over other species. Sum of 21 Cyanophyceae species were found in Gaurala lake, among which *Oscillatoria*, *Microcystis* and *Spirulina* were dominant over further species. The Bacillariophyceae family, sum of 28 species were found in Gaurala lake, among them *Diatom*, *Synedra*, *Gomphonema*, *Navicula* and *Diadesmis confervaceae* were dominant over other species. In Euglenophyceae, sum of 08 species were present in Gaurala Lake, in which *Phacus*, *Trachelomonas* and *Euglena* were found to be dominant.

A researcher discovered that *Spirogyra*, *Scenedesmus*, *Cosmarium*, *Cladophora*, *Gloecystis* and *Chlorella* were dominant in Chlorophyceae from Ujani Reservoir of Maharashtra^[7]. Chlorophyceae was at its least in the monsoon season and at its most in the winter. Bacillariophyceae was at its least in the rainy season and at its most in the summer. Cyanophyceae was at its least in the summer and at its most in the winter in the Sahastradhara stream at Uttarakhand^[8]. The sum of 75 phytoplankton recorded from both Nandgaon and Arwat Lake and Chlorophyceae were dominant in both lakes^[2]. The variety of Chlorophyceae in Vijasan Lake in Bhadravati was examined and found sum of 24 species. The monsoon season had the largest number of Chlorophyceae species, while the winter season had the lowest^[6]. Phytoplankton species were found in the Ogane-Aji River, comprising 16 Chlorophyceae species (40%), 11 Bacillariophyceae species (27.5%), 10 Cyanophyceae species (25%), and 3 Euglenophyceae species (7.5%). Chlorophyceae was highest, where *Desmidaceae* and *Chlorellaceae* were dominant, and Euglenophyceae was least^[12]. In the river of Erai near Chandrapur recorded the Chlorophyceae (17 species)>Cyanophyceae (08 species)> Bacillariophyceae (07 species)> Euglenophyceae (02 species)^[3]. In Beledanga wetland, sum of 48 genera of phytoplankton were

discovered, with maximum phytoplankton discovered in the monsoon and the minimum phytoplankton discovered in Winter, including an abundance (27%) of Bacillariophyceae^[1]. In Azhagankulam Pond in Tirunelveli, Tamil Nadu, India recorded the number of species of plankton increased from December and reached its most in March^[13].

Table 1: List of Phytoplankton discovered in Gaurala Lake

Sr. No.	Genera/Species	Winter	Summer	Monsoon
A	Chlorophyceae			
1.	<i>Ankistrodesmus falcatus (Corda) Ralfs. 1848</i>	+	-	-
2.	<i>Chlamydomonas polypyrenoidicum Presc</i>	+	+	+
3.	<i>Chlorella vulgaris Beijerinck, 1890</i>	+	+	+
4.	<i>Chlorococcum humicola (Naeg.) Rab. 1868</i>	+	-	+
5.	<i>Coelastrum astroideum De Notaris 1867</i>	+	-	+
6.	<i>Coelastrum sphaericum Nageli, 1849</i>	+	-	+
7.	<i>Cosmarium angulosum Brebisson 1856</i>	+	-	-
8.	<i>Cosmarium leave Rabenhorst var. leave 1868</i>	+	-	-
9.	<i>Cosmarium lundelli Delponte 1877</i>	+	-	+
10.	<i>Cosmarium moniliforme (Turpin) Ralfs.</i>	+	-	+
11.	<i>Eudorina elegans Ehrenberg, 1832</i>	+	-	-
12.	<i>Kirchneriella lunaris (Kirchner) Moebius, 1894</i>	+	-	-
13.	<i>Mougeotia C. Agardh, 1824</i>	+	-	+
14.	<i>Oedogonium cuspidatum Kutzing</i>	+	-	-
15.	<i>Oedogonium grande Kutzing ex Hirn 1900</i>	+	-	-
16.	<i>Oocystis natans var. Major G. M. Smith 1918</i>	+	-	+
17.	<i>Oocystis nodulosa West et. West- 1894</i>	+	+	+
18.	<i>Pandorina morula Bory de St. Vincent, 1824</i>	+	+	+
19.	<i>Pithophora roettleri (Roth) Wittrock 1877</i>	+	-	-
20.	<i>Pleodorina californica W. R. Shaw 1894</i>	+	-	-
21.	<i>Scenedesmus arcuatus Lemmermann, 1899</i>	+	-	+
22.	<i>Scenedesmus dimorphus (Turp.) Ktz. 1834</i>	+	+	+

23.	<i>Scenedesmus</i> <i>falcatus</i>	+	-	+
24.	<i>Scenedesmus</i> <i>oblicus</i> (Turpin) <i>Kuetzing 1833</i>	+	-	+
25.	<i>Scenedesmus</i> <i>perforatus</i> <i>Lemm. 1903</i>	+	-	+
26.	<i>Scenedesmus</i> <i>quadricauda</i> var. <i>Westii</i> G. M. <i>Smith 1904</i>	+	+	-
27.	<i>Spirogyra</i> <i>pellucida</i> (Hassall) kützing 1849	+	-	-
28.	<i>Spirogyra</i> <i>rhizobrachiales</i> <i>C. Jao</i>	+	-	-
29.	<i>Ulothrix</i> <i>variabilis</i> (Kützing) Kützing 1849	+	-	+
30.	<i>Ulothrix</i> <i>zonata</i> (Weber & Mohr) Kuetz. 1833	+	+	+
31.	<i>Volvox</i> <i>aureus</i> Ehrenberg, 1832	+	-	-

B	Cyanophyceae	Winter	Summer	Monsoon
1.	<i>Anabaena</i> <i>cylindrica</i> Lemm. 1896	+	-	-
2.	<i>Anabaena</i> <i>sphaerica</i> Bornet & Flahault, 1886	+	-	-
3.	<i>Chrococcus</i> <i>limneticus</i> var. <i>distans</i> G. M. Smith 1961	+	-	-
4.	<i>Chrococcus</i> <i>turgidus</i> Naeg.	+	-	+
5.	<i>Coelomorion</i> <i>pusillum</i> (Goor) Komarek 1988	+	-	-
6.	<i>Leptolyngbya</i> <i>Africana</i>	-	-	+
7.	<i>Lyngbya</i> Birgei G. M. Smith 1916	+	-	+
8.	<i>Merismopedia</i> <i>tenuissima</i> Lemm. 1898	+	+	+
9.	<i>Microcystis</i> <i>aeruginosa</i> Kuetz emend Elenkin. 1849	+	+	+
10.	<i>Microcystis</i> flos- aquaee (Wittr.) Kirch. 1898	+	+	+
11.	<i>Nostoc</i> <i>carneum</i> Vaucher ex Barnet & Flahault	+	-	-
12.	<i>Oscillatoria</i> <i>limosa</i> C. Agardh ex Gomont 1892	+	+	+
13.	<i>Oscillatoria</i> <i>princeps</i> vaucher ex Gomont 1892	+	+	+
14.	<i>Phormidium</i> <i>aerugineo</i> <i>caeruleum</i> (Gomont) 1988	+	-	+

15.	<i>Planktothrix</i> <i>agardhii</i> 1988	-	-	-
16.	<i>Pseudoanabaena</i> <i>catenata</i> Lauterborn 1915	+	-	-
17.	<i>Spirulina</i> <i>fusiformis</i> Woronichin, 1934	+	+	-
18.	<i>Spirulina</i> <i>meneghiniana</i> Zanardini ex Gomont 1892	+	+	-
19.	<i>Spirulina</i> <i>princeps</i> West & G.S. West 1902	+	+	-
20.	<i>Spirulina</i> <i>subsalsa</i> Oerested ex Gomont 1892	+	+	-
21.	<i>Synechococcus</i> <i>major</i> Schroteri	+	-	-

C	Bacillariophyceae	Winter	Summer	Monsoon
1	<i>Amphora</i> <i>veneta</i> Kützing 1844	+	-	-
2	<i>Aulacoseira</i> <i>italica</i> (Ehrenberg) kützing, 1844	+	-	-
3	<i>Coscinodiscus</i> <i>jonesianus</i> (Grevelle) Ostenfeld, 1915	+	-	-
4	<i>Cyclotella</i> <i>meneghiniana</i> Kützing, 1844	+	-	-
5	<i>Cymbella</i> <i>hantzschiana</i> Krammer, 2002	+	-	-
6	<i>Diadesmis</i> <i>confervacea</i> Kützing, 1844	+	+	-
7	<i>Fragilaria</i> <i>capucina</i> Desmazieres 1830	+	+	-
8	<i>Frustule</i> <i>rhomboids</i> (Ehrenberg) De Toni 1891	+	-	-
9	<i>Gamphonema</i> <i>affine</i> Kützing 1844	+	+	-
10	<i>Gamphonema</i> <i>gracile</i> Ehrenb. 1838	+	+	-
11	<i>Gamphonema</i> <i>augur</i> Ehr. Lange- Bertalot 1985	+	+	-
12	<i>Gamphonema</i> <i>vibrio</i> Ehr. 1843	+	+	-
13	<i>Melosira</i> <i>varians</i> C. Agardh 1827	+	+	-
14	<i>Navicula</i> <i>cryptocephala</i> Kützing 1844	+	+	-
15	<i>Navicula</i> <i>cuspidata</i> (Kützing) Kützing 1844	+	+	-
16	<i>Navicula</i> <i>gregaria</i> Donkin 1861	+	+	-
17	<i>Navicula</i> <i>radiosa</i> Kützing 1844	+	+	-
18	<i>Nitzschia</i> <i>acicularis</i> (Kützing) W. Smith 1853	+	+	-

19	<i>Nitzschia reversa</i> W. Smith 1853	+	+	-
20	<i>Nitzschia amphibia</i> Grunow 1862	+	+	-
21	<i>Nitzschia palea</i> (Kutz.) W. Smith, 1856	+	+	-
22	<i>Pinnularia</i> <i>microstauron</i> (Ehrenberg) Cleve 1891	+	+	-
23	<i>Pinnularia</i> <i>subanglica</i> Krammer 2000	+	+	-
24	<i>Pinnularia viridis</i> (Nitzsch.) Ehr. 1843	+	+	-
25	<i>Rhopaldia gibba</i> Ehrenberg O. Muller 1895	+	-	-
26	<i>Synedra acus</i> Kutzing, 1844	+	+	-
27	<i>Synedra ulna</i> (Nitzsch) Ehrenberg, 1832	+	+	-

D	Euglenophyceae	Winter	Summer	Monsoon
1.	<i>Euglena acus</i> O. F. (Muller) Ehrenberg 1830	+	-	+
2.	<i>Euglena gracilis</i> Klebs 1883	+	-	+
3.	<i>Lepocinclis</i> <i>fusiformis</i> (H.J. Carta) Lemm. 1901	+	-	+
4.	<i>Phacus caudatas</i> Huenbner 1886	+	-	+
5.	<i>Phacus</i> <i>circumflexus</i> Pochman 1942	+	-	+
6.	<i>Trachelomonas</i> <i>bacillifera</i> Playfair 1915	+	-	-
7.	<i>Trachelomonas</i> <i>daybowskii</i> Drezepolski 1923	+	-	-
8.	<i>Trachelomonas</i> <i>volvocina</i> (Ehrenberg) Ehrenb. 1834	+	-	-

Phytoplankton of Gaurala Lake

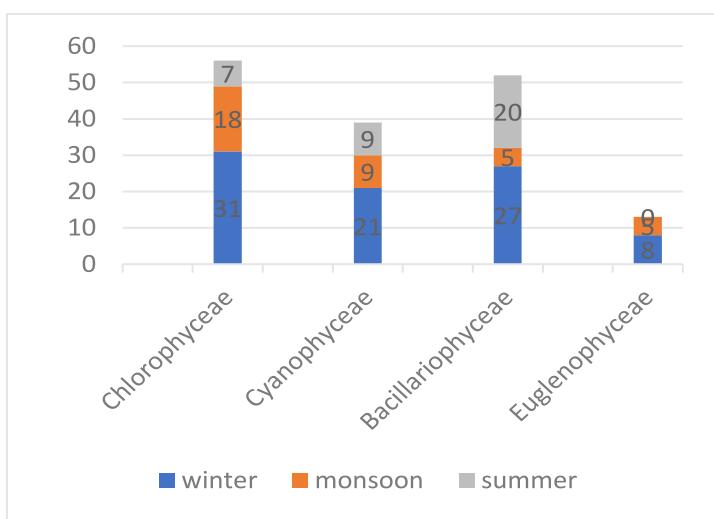


Fig. 1: Seasonal diversity of Phytoplankton in Gaurala Lake

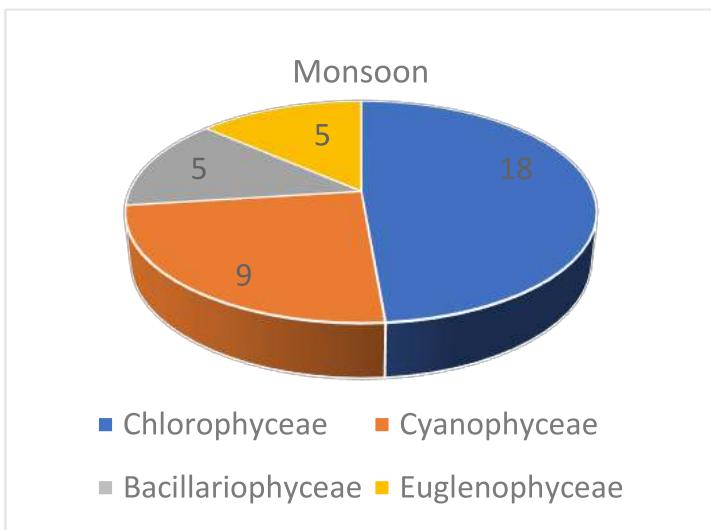


Fig. 2: Distribution of Phytoplankton in Monsoon

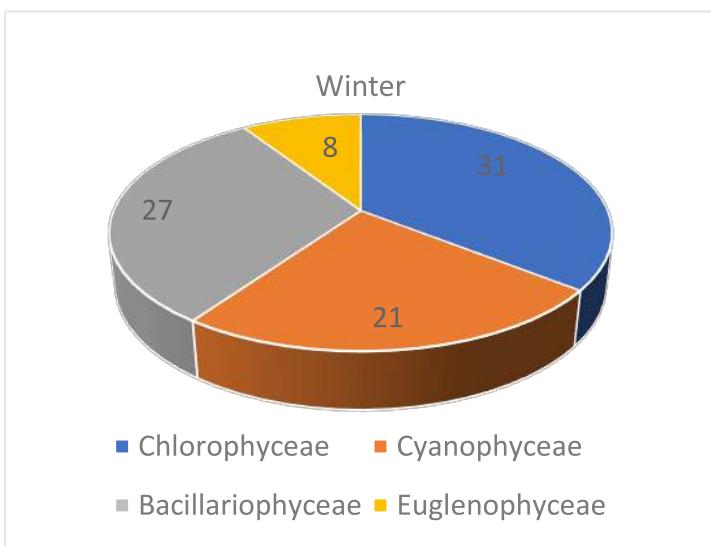


Fig. 3: Distribution of Phytoplankton in Winter

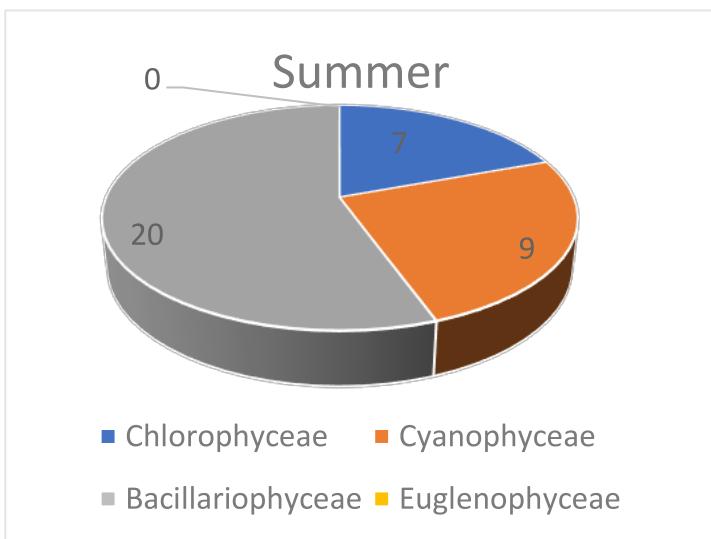


Fig. 4: Distribution of Phytoplankton in Summer

References

1. Basanta Kumar Das, Trupti Rani Mohanty, Shreya Bhattacharya, Kausik Mondal, Nitish Kumar Tiwari, Purna Chandra, Gunjan Karnataka, Lianthuamlua, Sangeeta Chakraborty, Pranay Parida, archan Kanti Das, Aparna Roy (2024) Seasonal influence of physicochemical and climatic parameters on phytoplankton diversity and abundance pattern in community managed semi-impacted floodplain wetland. *Environmental Monitoring and Assessment* 196(7), pp:648.
2. Chunne S. C. and Nasare P. N. (2019) Comparative Study of Phytoplankton Biodiversity from Nandgaon and Arwat Lakes of Chandrapur District, Maharashtra, India. *Ajanta* – ISSN 2277 – 5730 Impact Factor – 5.5, Vol. IX, Issue-II.
3. Dahegaonkar N. R. (2023) Limnological profile of River Erai near Chandrapur, Maharashtra, India. *International journal of Research in Bioscience, Agriculture and Technology IJRBAT*, Issue (XII) Vol (I): 165-171.
4. Gilbert Morgan Smith (1926) The Plankton algae of the Okoboji Region. *Transaction of the American Microscopical Society*. (JSTOR)-Vol. 45, Iss: 3, pp- 156.
5. Gilbert Morgan Smith (1918) A Second list of algae found in Wisconsin Lake. *Transaction of the Wisconsin Academy of Science, Arts and Letters* 19: 614-654.
6. Luharia N. M., Harney N. V. and Dhamani A. A. (2021) Seasonal Chlorophycean Diversity in Vijasan Lake of Bhadrawati, District Chandrapur (M.S.) India. *International Journal for Innovative Research in Multidisciplinary Field*. ISSN: 2455-0620 Issue-22, pp:220-221.
7. Mahadik, Bibshan B. and Jadhav Milind J. (2014) A preliminary Study on Algal Biodiversity of Ujani reservoir (M.S.) India, *Bioscidisc* 5(1): 123-125.
8. Mahajan V. S. (2018), 'Seasonal variation of phytoplankton in Mohabala Lake near Bhadrawati, District – Chandrapur (M.S.), India. *International Journal for Environmental Rehabilitation and Conservation*. ISSN: 0975-6272, IX (1):120-126.
9. Millman M C, Cherrier C and Ramstack J (2005) The seasonal succession of the phytoplankton community in Ada Hyden Lake, North Basin, Ames, Iowa. *Limnology*, Iowa State University, Ames, Iowa.
10. Prescott G. W. (1982) *Algae of the Western Ghat Lakes areas*. Otto Koeltz Science Publishers, Germany, pp: 662-962.
11. Prescott G. W. (1954) *How to Know the Freshwater Algae*. W.M.C. Company Publishers, Iowa, p.272
12. Okpanachi V. Ugbede, Egbeja T. Idris and Oguche J. Ugojobo-Ide (2022) A Review of Phytoplankton Abundance and Its Effects on The Ogane-Aji River in Anyigba, Kogi State. *Quest Journals Journal of Research in Environmental and Earth Sciences*. Vol. 8, Issue 6(2022) pp: 42-47.
13. Santha R Kumari (2025) Plankton diversity and water quality in Azhagankulam Pond of Tirunelveli, Tamilnadu, India. *Uttar Pradesh Journal of Zoology* 46(7), 19-27.
14. Sharma, R. and Diwan, A.P. (1997) Limnological studies of Yeshwant Sagar reservoir. Plankton population dynamics. In *Recent Advances in Freshwater Biology*, Vol., (1) pp.1992-211.