

From Roots to Cloud: Sensor-Based Irrigation and Fertigation Monitoring

Hari Krishna. B*¹, Chilakamari Lokesh¹, A. Sairam³, Machanuru Raviteja² and Gaddam Sidhartha³

¹Professor Jayashankar Telangana State Agricultural University, Hyderabad, India

³ICAR- Indian Agricultural Research Institute, New Delhi, India

³Environmental science, ICAR- Indian Agricultural Research Institute, Assam, India

10 January 2023: Received | 13 February 2023: Revised | 06 March 2023: Accepted | 08 April 2023: Available Online

*Corresponding Author: Hari Krishna. B | Email Address: hari.agricos07@gmail.com

Citation: Hari Krishna. B, Chilakamari Lokesh, A. Sairam, Machanuru Raviteja and Gaddam Sidhartha (2023). From Roots to Cloud: Sensor-Based Irrigation and Fertigation Monitoring. *Life Science Review*. DOI: <https://doi.org/10.51470/LSR>

Abstract

Agriculture is entering a data-driven era where every drop of water and nutrient matters. The integration of sensor-based technologies with cloud computing has redefined irrigation and fertigation management. From the roots of crops to the cloud platforms that analyze field data, a seamless digital ecosystem is emerging—one that optimizes water and nutrient delivery in real time. This revolution enables farmers to make precise decisions, conserve resources, and enhance productivity under the growing pressures of climate variability and water scarcity.

Keywords: analyze field data, digital ecosystem, precise decisions, conserve resources, soil moisture, temperature.

Introduction

Traditional irrigation systems have relied on fixed schedules or visual judgment, often leading to over- or under-irrigation. Sensor-based irrigation changes this by measuring real-time soil moisture, temperature, and humidity within the root zone. These sensors—ranging from simple tensiometers to advanced capacitance and time-domain reflectometry (TDR) devices—provide precise data that allows irrigation systems to operate only when needed. By automating water delivery, farmers can save 30–50% of irrigation water while maintaining consistent yields [1]. This shift not only improves water-use efficiency but also prevents problems such as nutrient leaching and salinity buildup.

Fertigation Monitoring: Precision Nutrition

Fertigation—the process of delivering fertilizers through irrigation systems—has evolved into a precise science with the help of sensors and data analytics. Soil and nutrient sensors measure the concentration of essential nutrients like nitrogen, phosphorus, and potassium in real time. This information helps adjust fertilizer dosing according to crop growth stages and soil nutrient dynamics [2]. Integration with flow meters, EC (electrical conductivity) sensors, and pH sensors ensures that nutrient concentrations in the irrigation water remain within optimal ranges. Such systems not only enhance nutrient-use efficiency (NUE) but also reduce fertilizer losses, protecting groundwater and improving profitability.

Cloud Integration: The Digital Backbone

What connects the sensors in the field to decision-makers miles away is the cloud. Cloud-based platforms collect, process, and visualize data from thousands of sensors across farms, enabling farmers to monitor their fields anytime, anywhere. Machine learning algorithms analyze soil and climate data to predict irrigation and fertigation needs days in advance. These predictions are translated into automated actions—triggering irrigation valves or adjusting fertilizer injectors. This connected ecosystem makes modern agriculture not only efficient but also scalable, as smallholders and large estates alike can leverage the same technologies [3].

Benefits of Sensor-Based Irrigation and Fertigation

The combined use of sensors and cloud-based monitoring offers multiple agronomic, economic, and environmental benefits:

- Water Conservation: Up to 40–60% water savings compared to conventional methods.
- Improved Nutrient Efficiency: Site-specific fertigation enhances nutrient absorption and minimizes runoff.
- Yield Stability: Sensors maintain optimal root-zone moisture and nutrient balance throughout crop stages.
- Energy Efficiency: Reduced pump operation times lower power consumption and greenhouse gas emissions.
- Data-Driven Decisions: Historical and predictive data improve farm management and planning.

© 2023 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

Together, these benefits contribute to a sustainable and resilient farming system.

Challenges and Limitations

Despite its promise, sensor-based irrigation and fertigation systems face challenges. High installation costs, data connectivity issues, and the need for technical training often limit adoption. Moreover, local calibration of sensors for different soil types remains essential to ensure accuracy. Data privacy and interoperability between various sensor brands and software platforms are also growing concerns [2]. To overcome these challenges, governments and agritech startups are promoting open-source data standards and subsidizing smart irrigation tools under national digital agriculture missions.

Real-World Applications

Across the globe, successful deployments illustrate the power of sensor-driven irrigation and fertigation systems. In Israel, cloud-connected drip irrigation systems monitor soil moisture and nutrient uptake in real time, improving water-use efficiency by up to 90% [1]. In India, pilot projects in Maharashtra have integrated solar-powered IoT sensors with mobile alerts, enabling farmers to reduce irrigation frequency and fertilizer inputs by nearly 35% [3]. Meanwhile, Australian vineyards use soil moisture probes and cloud dashboards to achieve precision fertigation that enhances grape quality and saves resources [2].

The Future: From Roots to Cloud

The future of irrigation and fertigation monitoring lies in greater automation, integration, and intelligence. Next-generation systems will employ AI-driven decision models, nano-sensors capable of detecting nutrient fluxes at microscopic levels, and satellite-linked cloud analytics for regional water management.

Edge computing will allow real-time decision-making directly on sensor nodes, reducing latency and data costs. As these technologies mature, agriculture will move closer to a closed-loop system where soil, plants, and machines continuously communicate through the cloud—making every drop of water and nutrient count [3].

Conclusion

From roots embedded in the soil to data hosted in the cloud, sensor-based irrigation and fertigation monitoring symbolize the future of sustainable agriculture. By merging soil science, engineering, and artificial intelligence, farmers can precisely balance productivity with resource conservation. As these technologies continue to advance, they will not only feed crops more intelligently but also nurture the planet responsibly.

References

1. FAO (2022). Digital Irrigation and Fertigation Technologies for Sustainable Agriculture. Food and Agriculture Organization of the UN, Rome.
2. Ben-David, Y., Cohen, A., & Levi, S. (2022). Cloud-integrated drip irrigation in semi-arid regions: Efficiency and sustainability outcomes. *Journal of Precision Agriculture*, 28(3), 145–159.
3. ICAR (2021). Smart Irrigation and Fertigation Initiatives in Indian Agriculture. ICAR–IARI, New Delhi.